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Quantum irregular scattering in the presence of a classical stability island
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A simple irregular scattering system is investigated classically and quantum mechanically. The ex-
istence of sharp resonances due to the quantum tunneling between the chaotic and regular parts of the

classical phase space is demonstrated.

PACS number(s): 05.45.+b

I. INTRODUCTION

Classical irregular scattering has been a subject of in-
tense interest for more than one decade [1,2]. Being a
typical example of transient chaos, it has attracted re-
cently considerable attention and is a frontier of the
research on classical chaotic Hamilton systems. The
quantum consequences of the classical irregular scatter-
ing were studied first by Blumel and Smilansky to our
knowledge [3]. They demonstrated that the existence of
the classical chaotic repeller implies Ericson fluctuations
of the corresponding quantum .S matrix.

Today the properties of the classical and quantum ir-
regular scattering have been investigated in various mod-
els. Their common feature was that the classical chaotic
repeller (which is responsible for the appearance of the
fractally organized singularities in the classical scatter-
ing) was fully hyperbolic. This means that the probabili-
ty density P(z) for a classical particle to stay in the in-
teraction region for a time longer than ¢ is given by

P(t)y=e ™, (1)

with a being connected with the Lyapunov exponent of
the repeller and with the corresponding Kolmogorov-
Sinai entropy [4]. In the classical case it implies a self-
similar structure of the scattering singularities (a kind of
Cantor set). In the quantum case (1) leads to the absence
of long-lived resonances and consequently to the Ericson
fluctuations of the quantum cross section [3].

In the present paper we will construct a one-
dimensional and time-periodic (kicked) model in which
(1) is violated. Depending on the parameters of the mod-
el, the corresponding repeller will display a large stability
island leading to an algebraic decay of P (¢):

P(t)y=t™*. (2)

The influence of the elliptic domain on the fractal set
of the classical scattering singularities will be investigated
in Sec. II. The quantum case is discussed in Sec. III,
where we show that the existence of a classical island of
stability leads (via tunneling) to the appearance of sharp
resonances.
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II. DESCRIPTION OF THE MODEL:
CLASSICAL CASE

The system to be investigated consists of a one-
dimensional particle moving on a line under the influence
of a kicked short-range potential. The classical Hamil-
tonian of the model reads

Hpx,0=1p>+2V(x) S 8(t—n) (3)

n=—o0
with the potential given by

V(x)=—e“"2, A>0, xE(—ow,w). (4)

The dynamics of the system is governed by the classical
map M,

pn+1=pn_V’(xn) s Xp+1= Xy +pn+1 ’ (5)

where x,, and p, denote the coordinate and the momen-
tum, respectively, of the particle after the nth kick. Due
to the short-range character of the potential we can
divide the phase space into the interaction and the
asymptotically free region. Under the asymptotically free
region we understand that part of the phase space on
which the influence of ¥V is negligible.

Restricted on the interaction region the phase-space
portrait of the above map is easily described. The origin
is a fixed point of the mapping that is stable for A <2. It
is surrounded by a set of Kolmogorov-Arnold-Moser
(KAM) curves defining a stable region (the stability is-
land) in which the motion is quasiperiodic. The stability
island is imbedded into a chaotic layer that is inter-
spersed with smaller islands [see Fig. 1(a)]. For A >2 the
fixed point becomes unstable and the stability island
disappears. Some smaller secondary island may be, how-
ever, still present. For A large enough the interaction re-
gion becomes hyperbolic [see Fig. 1(b)].

The transport properties of the trajectories depend on
the structure of the phase space. In the hyperbolic case,
the probability P(¢) for a trajectory to stay in the interac-
tion region is given by formula (1). It is, however, well
known that the existence of a stability island changes this
behavior, leading to an algebraic decay. The theoretical
explanation of this fact is given in [5,6]. It has been ar-
gued that the trajectory is sticking on the boundary of
this stability domain leading to P(¢)~t~ ¢ with a close to
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1.5 [7].

During the scattering process the incoming trajectory
has to pass through the interaction region to reach again
the asymptotically free part of the phase space. The
structure of the interaction region is therefore decisive
for the structure of the scattering function [8]. Our aim
is to investigate the outgoing momentum of the particle
as a function of the incoming parameters. To define these
quantities let us examine the classical trajectory described
by the mapping (5). The evolution starts at time ¢z =0
with initial conditions (pg,x¢)=(pi,,X;,). We will as-
sume that the initial coordinate x;, is localized in the
asymptotically free domain. Due to the time periodicity
of the potential we can compactify the asymptotic
domain restricting x;, to an interval of a length p, .
[Note that the initial conditions (p;,,x;,) and
(Pin»Xin TPin) describe the same trajectory.] Further let

(p,»x,) denote the trajectory at time t =n. Following the
standard classical scattering theory we define the outgo-
ing momentum p_, and the “outgoing” coordinate x
by

out

nlin:o”pn —pout|+|xn_(xout+npout)“=0 (6)

by which the definition of (p;,,x;,) implies
nETw(“J" —Pinl +1x, —(x;, +1p,,))=0. (7
The physical meaning of x;, and x,, becomes more clear
if we introduce times ¢;, and ¢, as
Xin X out

t. = — , 1 = - . (8)
" Pin o Pout

FIG. 1. (a) Phase-space por-
trait of the system for A=1. (b)
Phase-space portrait of the sys-
tem for A=4.
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At=t,,—tiy 9)

is nothing but the time the particle stays in the interac-
tion region. Depending on A the probability distribution
for At coincides with (1) or (2).

The classical scattering describes the outgoing momen-
tum p,, as a function of (p;,,x;,):

pout=f(pin’xin) . (10

We will fix the momentum p;, in our calculations and in-
vestigate f as a function of x;; only.

To see the intimate connection between the function f
and the probability P(¢), let us initial trajectories with
fixed p;, and with x;, being uniformly distributed in the
interval Iy=(xy,xy+p;,). The mapping M that propa-
gates the initial phase-space interval J=p, XI, is
smooth. This implies that the image J,=M"J is a
smooth curve in the phase space. During the time evolu-
tion some parts of the curve J, may be mapped into the
asymptotically free part of the phase space. The smooth-
ness of the mapping ensures that those ‘“asymptotically
free” parts of J, correspond to one or several subinter-
vals I,; I, C I of the initial conditions x;,. The smooth-
ness of the mapping M implies that the outgoing impulse
Doyt is @ smooth function of x;, on I,. The length A, of
initial interval which maps into the asymptotically free
domain between the nth and (n + 1)th kick is proportion-
al to

A,=I,.,—I,=I,[P(n)—P(n+1)]. (11)

In the case of the exponentially decaying P (¢) we find
An zlo(e—an_e —aln +1))=Ioe —an(]_ o)

=I(n)(1—e™ "),

(12)
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where I(n) is the part of the initial interval I, that stays
in the interaction region before (n +1)th kick. This
means that the relative amount of trajectories leaving the
interaction domain between the nth and (n +1)th kick is
constant. Continuing the subsequent mapping of the ini-
tial interval I, we are left at the end with a Cantor set of
initial conditions corresponding to trajectories that never
escape the interaction region. (The function f describing
the outgoing momentum is, of course, singular at these
points). Their fractal dimension follows from (12) and is
equal to [9]

_ In(2)
=2 ta 13
For algebraic decay we find, however,
~ZIn) . (14)
n

The relative amount of trajectories escaping between the
nth and (n +1)th kicks decrease with n. Lau, Finn, and
Ott demonstrated [8] that the set of singular points one
obtains here has a fractal dimension equal to one. The
subsequent magnification of the function f will uncover a
structure that is more violent on smaller scales.

In our model the influence of the elliptic island on the
behavior of the scattering singularities can be easily in-
vestigated. Figures 2 and 3 show the outgoing momen-
tum p,, as a function of x;, for two different coupling
constants A. In the first case (A=5) the interaction re-
gion is hyperbolic, leading to a self-similar structure of
the scattering singularities. The second case corresponds
to A=0.5 when the system displays a large stability is-
land. The difference in the structure of the singular
points is clearly visible.

FIG. 2. p,. as a function of
X, in a series of subsequently
magnified plots, for A=5. The

-10—

interaction region is hyperbolic,
and the structure of the scatter-
ing singularities is self-similar.
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III. THE QUANTUM CASE

Before describing the quantum case it is reasonable to
reformulate the scattering in a time-independent frame.
In the classical mechanics this can be achieved by adding
the time as a new canonical variable into the phase space.
The conjugated momentum is then given by & and the
new Hamiltonian reads

K(p,x,6,t)=6+H (p,x,t) , (15)

where H (p,x,t) is the original time-dependent Hamil-
tonian (3). Since we deal with a time-periodic model we
will assume the new coordinate ¢ to be periodic and
confined to an interval t&€[0,1]. The extended phase
space is therefore equivalent to a four-dimensional
cylinder. Introducing a formal new time 7, the classical
equations of motion in the extended phase space read

dx _0K dp_ _ 93K

dr 9dp dr ax ’

e _OK_, dé__ oK _ oH e
dr a6 ' dr o ot

and are, of course, fully equivalent to the original Hamil-
ton equations.

In the quantum case a formal quantization of (15) leads
to a Floquet Hamiltonian K introduced by Howland [10]
and Yajima [11],

K=ifid+H(®) , an
at
which is defined on an extended Hilbert space

FH=L?*(0,1)XR) with periodic boundary conditions
with respect to the variable ¢. (For the properties of the
Floquet Hamiltonian in kicked systems see [13].)
Knowing K and the corresponding free Floquet Hamil-
tonian K,
L, 0 # 3
Ko=itigr =~ e (18)

we can define the evolution operators U (7) and Uy(7),

., 0 ., 0

tﬁB;U('r)=KU('r) , 1h¥U0(7)=K0U0(7’) . (19)
The quantum S matrix is then given by

S=Q*Q, , (20)

with 0 _ and Q, being the wave operators

Q,=s lim U(—7)Uy(7),

T— — 0

Q_=slim U(—T1)Uy(7) .

T—> 0O

(21)

The S matrix (20) describes the quantum scattering and
can be investigated using the methods of the standard sta-
tionary scattering theory. Let us now discuss some of its
properties.

From the definition (20) it follows that the free Floquet
Hamiltonian K, commutes with S:

[S,Ky]=0. (22)
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This in turn means that the free quasienergy (i.e., the
eigenenergy of the operator K) is conserved during the
scattering process. This fact has several consequences.
One of them is that the particle can gain only a discrete
amount of energy. This can be seen easily if we realize
that the free Floquet Hamiltonian K, separates and
defines in such a way the incoming and outgoing ‘“chan-
nels” for the quantum scattering. The free wave function
f, belonging to the nth channel with quasienergy ® (i.e.,
solving the equation Ky f, =®f, ) has the form

fo(x,0)=e2™i(q ! PPnE o TP, (23)
with p, being the momentum of the particle
1pl+2mtin=0 . (24)

Let us assume that the incoming particle has quasienergy
® and momentum equal to p;,. After the scattering we
will find the particle with a momentum p, . Due to the
quasienergy conservation, p;, and p,, have to fulfill

%pizn+277ﬁnin:%pgut +21rﬁnout ’ (25)

with n,, and n_, being integers. Hence the kinetic ener-
gy E =p?/2 of the particle can change only by discrete
portions of 27#.

The conservation of the quasienergy enables us to
decompose the S matrix as

s=[s@)yde, (26)

where S(®) is the on-shell S matrix referring to the
scattering with a given quasienergy ®. We will show
later that using S (®) one can naturally define the dynam-
ic resonances as poles of S (®) when continuing the S ma-
trix into the complex quasienergy plane.

Concerning the S matrix several questions arise. The
first and most important one is to what extend the S ma-
trix S (®) reflects the phase-space structure of the classi-
cal model. Using the four-dimensional reformulation of
the classical mechanics one can write S(®) in its semi-
classical form. The classical trajectories required for the
semiclassical quantization of S are obtained as follows:
At 7— — « and |x|— o the generalized momentum & is
set to &;, while the momentum p;, of the incoming parti-
cle is taken to give the quasienergy ® its specified value:

Gintiph=0. 27)

Now the initial coordinate x;, is chosen and the equa-
tions of motion (16) are solved. As 7— o0 the momentum
& becomes 6

6out=f(xin’ 5in) (28)
and the outgoing momentum p,, fulfills
O=8out+1p2u - (29)

Each trajectory s that satisfies f(x;,,&;,)= 6, contrib-
utes to the transition probability &;,— &, a term
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—1

af(xin’ 6in)

ax;, 0

P(g:i)n"gout = [
(s)

The quantum S matrix S(®) is then obtained using the

method of Maslov as explained by Miller [12] and applied

by Blumel and Smilansky [3]. For this reason we intro-

duce the reduced classical action

I(s)= f(S)P dx + f(s)é At =P ouX out — Goutfout
+pinxin+5- t. . (31)

n"in

This choice of the action ensures that I(s) does not de-
pend on the initial and final points along the trajectory as
long as they stay in the asymptotic (interaction-free) re-
gion.

In the semiclassical theory the ‘“‘generalized momen-
tum” & is quantized as

6,=2mhn , n€Z (32)

and the semiclassical S matrix is equal to

Sym(®)=S; ; (@)

I(s) 1,
i— ——ima(s)

€Xp # b

b

=3 [P¢ s

172
(s) "

(33)

where a(s) is the Maslov index of the trajectory s. The
summation in expression (33) runs over all classical tra-
jectories s connecting &, and &,. In the time-
independent case formula (33) has been used by Blumel
and Smilansky to evaluate the correlation function

A, (€) of the S matrix S(®):
A, o (€)=(S},(©)S, ,,(O+e))g, (34)

where { )g denotes the average about a classically small
quasienergy interval A®. Inserting (33) into (34) and
decomposing the final expression with respect to g,
Blumel and Smilansky showed that in the time-
independent case the exponential decrease of the classical
probability (1) implies the absence of long-lived reso-
nances in the quantum case and correspondingly Ericson
fluctuations [3]. Using the same method we find

. 1 3dI(s)
ie—————

# 00

A, ,, =<2P(é§l_,éom(®)exp

} +ole). (35)
(s) 0]

The derivative of the action I(s) with respect to the
quasienergy O is equal to the formal ““‘time” 7 the particle
spends in the interaction region. From the classical equa-
tions of motion (16) we learn, however, that 7=t plus
some constant that can be set to zero. Therefore 31 /0@
is equal to the true time delay AT. Labeling the trajec-
tories with AT we can rewrite (35) as

A =~ [Py _ o (O,AT))oe’PTd(AT), (36)
n,m 6,—6, o

where P s (©®,AT) is the classical conditional proba-

_bility that a transition &, — &, takes place with a trajec-

tory staying in the interaction region for a time A7T. Re-
placing P(;nag (®,AT) with (1) we find [3]

A, (e)=A,,(0)——— . (37)
cz—ii

#

The fluctuations of the S matrix are therefore here also of
the Ericson type [14] (see Fig. 4).

s 5
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I

0.3 . | . .

FIG. 3. Same as in Fig. 2, but

for A=0.5. The structure of the
scattering singularities is not
self-similar. The plot indicates a

1 1 L .03 L

fractal with fractal dimension
equal to 1.
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FIG. 4. Fluctuations of the
i real part of the matrix element
S, for A=5 and #=0.05.
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Quasienergy

The situation changes, however, if the interaction re-
gion contains a well-developed stability island. The de-
cay becomes algebraic (2), and (37) is not applicable. In-
stead of Ericson fluctuations, the numerical calculations
uncover here a series of sharp resonance peaks that can
be understood as appearing due to the quantum tunneling
into the stability island (see Fig. 5).

To gain some insight into the resonance formation we
followed numerically the evolution of the quantum wave
packet evaluating simultaneously the corresponding
Husimi distribution p, [15]:

0.05 0.06

Pup, =g, ,I¥)]? (38)

with @, , being the minimal wave packet

i _ (x—¢q)?
7P T s (39)

(pp,q(x)= exp

1
(’}Tﬁ)l/z

At time t =0 the wave packet was localized in the asymp-
totically free domain having an initial momentum equal
to p;,- The state then was propagated using a quantum
map associated with the Hamiltonian (3) and the corre-

05 - — . .
045 .
0.4} .
035 5
= [ | (\ FIG. 5. The absolute value of
2 03 , ' ’ | | the matrix element S;; as a
g /\ function of the quasienergy eval-
= 025¢ { / | 7 uated for A=0.5 and #=0.01.
% ,/ \ The sharp resonance peaks can
% 02r | ; " ‘ A be understood as appearing due
\ \ \ | to the quantum tunneling into
015} i \ ! J { . the stability island.
| | i \ \
0.1 j | ] l \
/ \ / ) | \ | // /”\
0os | / \\ ) | . / \/ /
L ARNIVAY ~ Py \/ \/ v ¥
s 1 15 7 25 3 35 4

Quasienergy
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sponding Husimi distribution was evaluated. The results
for the resonance quasienergy are plotted on Fig. 6. A
similar plot has been evaluated also for a nonresonant
quasienergy and plotted in Fig. 7. The process of the res-
onance trapping of the wave packet in the classical stabil-
ity region is clearly apparent. In the nonresonant case
the wave packet goes ‘“through” the interaction region
without displaying a substantial influence of stability is-
land.

The Husimi distribution of the wave function trapped
in the stability domain is displayed in Fig. 8 and com-
pared with the classical case. This figure demonstrates
that the main part of the wave function is actually
trapped in the stability domain.

A very important structure of the Floquet Hamiltonian
is the Brillouin-zone structure of its spectrum. From the
solution of the eigenvalue equation

Kfolx,t)=0fg(x,t) (40)

one immediately obtains a whole class of further solu-
tions f o4 yman:

S ot 2min (X )= (x,)e>™" . 41)

Obviously the first Brillouin zone 0<® <27# contains
the whole relevant physical information. This is why we
can restrict ourselves to the quasienergy interval
®€[0,27#) when scanning for the resonance peaks. To
demonstrate the connection between the quantum reso-
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nances and the classical stability island we will suppose
for a moment that the outermost KAM curve, which sets
the boundary of the island and is impenetrable for the
classical particle, is impenetrable for quantum particles
as well. Then some quantum states will be trapped inside
the island, leading to eigenvalues imbedded into the con-
tinuous spectrum of the Floquet Hamiltonian K. [For-
mally these eigenvalues are real poles of the S matrix
S(0).]

The number W of them is given roughly by the area &
of the stability island divided by 27#:

8
N= o 42)

Moreover, in the semiclassical regime the eigenvalues are
nearly equidistant. (This is a direct consequence of the
EBK quantization; see, for instance, [16].) The distance
A between the neighboring eigenvalues is easily approxi-
mated by

27
A= N (43)

Inserting (42) into (43) we find

4 2
Az%ﬁz . (44)

FIG. 6. The time evolution of the Husimi
distribution evaluated for a resonant quasien-
ergy. The trapping of the wave function in the

stability island is clearly visible. The number
of kicks is indicated inside the figures.
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FIG. 7. Same as in Fig. 6, but for a non-
resonant quasienergy. There is no trapping in-

side the stability domain.

N=250

=%
L
X X
2f
A7 =
—

=% o 0 ==
- — -2 — —
-4 -2 0 2 4 -4 -2 0
X X

The quantum tunneling through the outermost KAM
curve turns the eigenvalues into resonances and the poles
on the S matrix S(®) will move from the real axis. One
can find them, however, by continuing S(®) into the
complex plane. The real part of the resonance poles will
remain nearly equal to the above-described eigenvalues

(assuming the tunneling is not very strong). As a result
we have to find (for small #) a ladder of nearly equidistant
resonance peaks when plotting the quantum transition
probabilities as a function of the quasienergy (see Fig. 5).
The formula (44) suggests a quadratic dependence of the
mean distance A on #i. We evaluated A for several 7 and

@»x,/fzh?)x

i \

-0.5

-1

/i&@»{@i@h e
@ %%f

FIG. 8. The Husimi distribu-
tion of the wave function
trapped in the stability domain
- is displayed and compared with
the corresponding classical
phase-space portrait.
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0.014 T T r T -

0.012F

0.01+

0.008}

0.006}

mean distance

0.004

0.002f Lo

FIG. 9. The mean distance between the res-
onance peaks as a function of # (asterisks)
compared with the prediction of the formula
(44).

0 I . . ) . .
0 0.02 0.04 0.06 0.08 0.1 0.12

compared the result with the prediction of (44) in Fig. 9.
The agreement is astonishingly good.

IV. CONCLUSION

We have investigated the scattering in a one-
dimensional time-periodic model. The results show that

0.14 0.16

the existence of a well-developed stability island leads in
the classical mechanics to a fat fractal of scattering singu-
larities. In the quantum case the tunneling into the sta-
bility island leads to the appearance of sharp resonances.
It is tempting to speculate that the same mechanism will
create resonances also in other scattering systems with
well-developed stability islands.
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